top of page

MY PUBLICATIONS

January 27, 2020

Sulfate Geoengineering​

A climate engineering technique for a warming planet: stratospheric sulfur injections as a temporary solution to greenhouse gases increase. Visioni, D., pp 172, ISBN 978-88-255-2042-2, 2019. http://www.aracneeditrice.it/aracneweb/index.php/pubblicazione.html?item=9788825520422 [Extended version of PhD thesis]

  1. Seasonally Modulated Stratospheric Aerosol Geoengineering Alters the Climate Outcomes, Visioni, D., MacMartin, D. G., Kravitz, B., Richter, J. H., Tilmes, S., and Mills,M. J., Geophysical Research Letters, 47, e2020GL088 337, doi:10.1029/2020GL088337, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088337.

  2. What goes up must come down: impacts of deposition in a sulfate geoengineering scenario Visioni, D., Slessarev, E., MacMartin, D., Mahowald, N. M., Goodale, C. L., and Xia,L.,Environmental Research Letters, http://iopscience.iop.org/10.1088/1748-9326/ab94eb

  3. Stratospheric Sulfate Aerosol Geoengineering Could Alter the High Latitude Seasonal Cycle, Jiang, J., Cao, L., MacMartin, D. G., Simpson, I. R., Kravitz, B., Cheng, W., Visioni, D., Tilmes, S., Richter, J. H., Mills, M. J., Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL085758, 2019

  4. Seasonal Injection Strategies for Stratospheric Aerosol Geoengineering, Visioni, D., MacMartin, D. G., Kravitz, B., Tilmes, S., Mills, M. J., Richter, J. H., Boudreau, M., Geophysical Research Letters, 46, 7790-7799. https://doi.org/10.1029/2019GL083680, 2019.

  5. Upper tropospheric ice sensitivity to sulfate geoengineering, Visioni, D., Pitari, G., di Genova, G., Tilmes, S., and Cionni, I., Atmospheric Chemistry and Physics, 18, 14867-14887, https://doi.org/10.5194/acp-18-14867-2018, 2018

  6. Sulfur deposition changes under sulfate geoengineering conditions: quasi- biennial oscillation effects on the transport and lifetime of stratospheric aerosols, Visioni, D., Pitari, G., Tuccella, P., and Curci, G., Atmospheric Chemistry and Physics, 18, 2787-2808, doi:10.5194/acp-18-2787-2018, https://www.atmos- chem-phys.net/18/2787/2018/, 2018.

  7. Sulfate Geoengineering Impact on Methane Transport and Lifetime: Results from the Geoengineering Model Intercomparison Project (GeoMIP), Visioni, D., Pitari, G., Aquila, V., Tilmes, S., Cionni, I., Di Genova, G., and Mancini, E., Atmospheric Chemistry and Physics, 17, 11 209-11 226, doi:10.5194/acp-17-11209- 2017, https://www.atmos-chem-phys.net/17/11209/2017/, 2017.

  8. Sulfate geoengineering: a review of the factors controlling the needed injection of sulfur dioxide, Visioni, D., Pitari, G., and Aquila, V., Atmospheric Chemistry and Physics, 17, 3879-3889, doi:10.5194/acp-17-3879-2017, 2017.

Volcanoes

  1. Sulfate aerosols from non-explosive volcanoes: chemical-radiative effects in the troposphere and lower stratosphere, Pitari, G., Visioni, D., Mancini, E., Cionni, I., Di Genova, G., and Gandolfi, I., Atmosphere 2016, 7(7), 85; doi:10.3390/atmos7070085, 2016

  2. Stratospheric aerosols from major volcanic eruptions: a model study of the aerosol cloud dispersal and e-folding time, Pitari, G., Genova, G. D. G., Mancini, E., Visioni, D., Gandolfi, I., and Cionni, I., Atmosphere 2016, 7(6), 75; doi:10.3390/atmos7060075, 2016

  3. Impact of stratospheric volcanic aerosols on age-of-air and transport of long- lived species, Pitari, G., Cionni, I., Di Genova, G., Visioni, D., Gandolfi, I., and Mancini, E., Atmosphere, 7, 1-22, doi:10.3390/atmos7110149, 2016.

Stratospheric Ozone

  1. Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Lamy, K., Portafaix, T., Josse, B., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Revell, L., Akiyoshi, H., Bekki, S., Hegglin, M. I., Jöckel, P., Kirner, O., Liley, B., Marecal, V., Morgenstern, O., Stenke, A., Zeng, G., Abraham, N. L., Archibald, A. T., Butchart, N., Chipperfield, M. P., Di Genova, G., Deushi, M., Dhomse, S. S., Hu, R.-M., Kinnison, D., Kotkamp, M., McKenzie, R., Michou, M., O'Connor, F. M., Oman, L. D., Pitari, G., Plummer, D. A., Pyle, J. A., Rozanov, E., Saint-Martin, D., Sudo, K., Tanaka, T. Y., Visioni, Daniele, and Yoshida, K. Atmos. Chem. Phys., 19, 10087–10110, https://doi.org/10.5194/acp-19-10087-2019, 2019.

  2. Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Zhang, J., Tian, W., Xie, F., Chipperfield, M. P., Feng, W., Son, S.- W., Abraham, N. L., Archibald, A. T., Bekki, S., Butchart, N., Deushi, M., Dhomse, S., Han, Y., Jöckel, P., Kinnison, D., Kirner, O., Michou, M., Morgenstern, O., O?Connor, F. M., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Visioni, D., Wang, W., and Zeng, G., Nature Communications, 9, 206, doi:10.1038/s41467- 017-02565-2, https://doi.org/10.1038/s41467-017-02565-2, 2018

  3. Ozone sensitivity to varying greenhouse gases and ozone-depleting sub- stances in CCMI-1 simulations, Morgenstern, O., Stone, K. A., Schofield, R., Akiyoshi, H., Yamashita, Y., Kinnison, D. E., Garcia, R. R., Sudo, K., Plummer, D. A., Scinocca, J., Oman, L. D., Manyin, M. E., Zeng, G., Rozanov, E., Stenke, A., Revell, L. E., Pitari, G., Mancini, E., Di Genova, G., Visioni, D., Dhomse, S. S., and Chipperfield, M. P., Atmospheric Chemistry and Physics, 18, 1091-1114, doi:10.5194/acp-18-1091-2018, 2018.

  4. Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Dhomse, S. S., Kinnison, D., Chipperfield, M. P., Salawitch, R. J., Cionni, I., Hegglin, M. I., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bednarz, E. M., Bekki, S., Braesicke, P., Butchart, N., Dameris, M., Deushi, M., Frith, S., Hardiman, S. C., Hassler, B., Horowitz, L. W., Hu, R.-M., Jöckel, P., Josse, B., Kirner, O., Kremser, S., Langematz, U., Lewis, J., Marchand, M., Lin, M., Mancini, E., Marécal, V., Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L., Pitari, G., Plummer, D. A., Pyle, J. A., Revell, L. E., Rozanov, E., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tilmes, S., Visioni, Daniele, Yamashita, Y., and Zeng, G. Atmos. Chem. Phys., 18, 8409-8438, https://doi.org/10.5194/acp-18-8409-2018, 2018.

  5. Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Revell, L. E., Stenke, A., Tummon, F., Feinberg, A., Rozanov, E., Peter, T., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Butchart, N., Deushi, M., Jöckel, P., Kinnison, D., Michou, M., Morgenstern, O., O'Connor, F. M., Oman, L. D., Pitari, G., Plummer, D. A., Schofield, R., Stone, K., Tilmes, S., Visioni, Daniele, Yamashita, Y., and Zeng, G. Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018, 2018.

Atmospheric circulation and composition

  1. The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models, Chrysanthou, A., Maycock, A. C., Chipperfield, M. P., Dhomse, S., Garny, H., Kinnison, D., Akiyoshi, H., Deushi, M., Garcia, R. R., Jöckel, P., Kirner, O., Pitari, G., Plummer, D. A., Revell, L., Rozanov, E., Stenke, A., Tanaka, T. Y., Visioni, Daniele, and Yamashita, Y. Atmos. Chem. Phys., 19, 11559–11586, https://doi.org/10.5194/acp-19-11559-2019, 2019.

  2. The influence of mixing on the stratospheric age of air changes in the 21st century, Eichinger, R., Dietmüller, S., Garny, H., Šácha, P., Birner, T., Bönisch, H., Pitari, G., Visioni, Daniele, Stenke, A., Rozanov, E., Revell, L., Plummer, D. A., Jöckel, P., Oman, L., Deushi, M., Kinnison, D. E., Garcia, R., Morgenstern, O., Zeng, G., Stone, K. A., and Schofield, R. Atmos. Chem. Phys., 19, 921–940, https://doi.org/10.5194/acp-19-921-2019, 2019

  3. Revisiting the Mystery of Recent Stratospheric Temperature Trends, Maycock, A. C., Randel, W. J., Steiner, A. K., Karpechko, A. Y., Christy, J., Saunders, R., Thompson, D. W. J., Zou, C.-Z., Chrysanthou, A., Luke, A. N., Akiyoshi, H., Archibald, A. T., Butchart, N., Chipperfield, M., Dameris, M., Deushi, M., Dhomse, S., Genova, G. D., Jockel, P., Kinnison, D. E., Kirner, O., Ladstadter, F., Michou, M., Morgenstern, O., O’Connor, F., Oman, L., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Stenke, A., Visioni, Daniele, Yamashita, Y., and Zeng, G. Geophysical Research Letters, 0, doi:10.1029/2018GL078035, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/ 2018GL078035, 2018

  4. Stratospheric Injection of Brominated Very Short-Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models, Wales, P. A., Salawitch, R. J., Nicely, J. M., Anderson, D. C., Canty, T. P., Sunil, B., Dix, B., Koenig, T. K., Volkamer, R., Chen, D., Huey, G. L., Tanner, D. J., Cuevas, C. A., Fernandez, R. P., Kinnison, D. E., Lamarque, J. F., Saiz-Lopez, A., Atlas, E. L., Hall, S. R., Navarro, M. A., Pan, L. L., Schauffler, S. M., Stell, M., Tilmes, S., Ullmann, K., Weinheimer, A. J., Akiyoshi, H., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Feng, W., Graf, P., Hossaini, R., Jockel, P., Mancini, E., Michou, M., Morgenstern, O., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Rozanov, E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K. A., Visioni, Daniele, Youshuke, Y., and Zeng, G. Journal of Geophysical Research: Atmospheres, 0, doi:10.1029/2017JD027978, https://agupubs.onlinelibrary.wiley.com/ doi/abs/10.1029/2017JD027978, 2018

  5. Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Dietmüller, S., Eichinger, R., Garny, H., Birner, T., Boenisch, H., Pitari, G., Mancini, E., Visioni, Daniele, Stenke, A., Revell, L., Rozanov, E., Plummer, D. A., Scinocca, J., Jöckel, P., Oman, L., Deushi, M., Kiyotaka, S., Kinnison, D. E., Garcia, R., Morgenstern, O., Zeng, G., Stone, K. A., and Schofield, R. Atmos. Chem. Phys., 18, 6699-6720, https://doi.org/10.5194/acp-18- 6699-2018, 2018

  6. Large-scale tropospheric transport in the Chemistry–Climate Model Initiative (CCMI) simulations, Orbe, C., Yang, H., Waugh, D. W., Zeng, G., Morgenstern , O., Kinnison, D. E., Lamarque, J.- F., Tilmes, S., Plummer, D. A., Scinocca, J. F., Josse, B., Marecal, V., Jöckel, P., Oman, L. D., Strahan, S. E., Deushi, M., Tanaka, T. Y., Yoshida, K., Akiyoshi, H., Yamashita, Y., Stenke, A., Revell, L., Sukhodolov, T., Rozanov, E., Pitari, G., Visioni, Daniele, Stone, K. A., Schofield, R., and Banerjee, A. Atmos. Chem. Phys., 18, 7217-7235, https://doi.org/10.5194/acp-18- 7217-2018, 2018

  7. Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH3CCl3 Alternatives, Liang, Q., Chipperfield, M. P., Fleming, E. L., Abraham, N. L., Braesicke, P., Burkholder, J. B., Daniel, J. S., Dhomse, S., Fraser, P. J., Hardiman, S. C., Jackman, C. H., Kinnison, D. E., Krummel, P. B., Montzka, S. A., Morgenstern, O., McCulloch, A., Muhle, J., Newman, P. A., Orkin, V. L., Pitari, G., Prinn, R. G., Rigby, M., Rozanov, E., Stenke, A., Tummon, F., Velders, G. J. M., Visioni, Daniele, and Weiss, R. F. Journal of Geophysical Research: Atmospheres, pp. n/a–n/a, doi:10.1002/2017JD026926, http://dx.doi.org/10.1002/2017JD026926, 2017JD026926, 2017

My Publications: Research

©2019 by Daniele Visioni. Proudly created with Wix.com

bottom of page